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Abstract Oral contraceptives (OC) and smoking-derived
nicotine (N) are known to synergistically increase the risk
and severity of cerebral ischemia in women. Although it has
been known for some time that long-term use of OC and
nicotine will have an increased risk of peripheral thrombus
formation, little is known about how the combination of OC
and nicotine increases severity of brain ischemia. Recent
laboratory studies simulating the conditions of nicotine ex-
posure produced by cigarette smoking and OC regimen of
women in female rats confirms that the severity of ischemic
hippocampal damage is far greater in female rats simulta-
neously exposed to OC than to nicotine alone. These studies
also demonstrated that the concurrent exposure of OC and
nicotine reduces endogenous 17β-estradiol levels and inhib-
its estrogen signaling in the brain of female rats. The en-
dogenous 17β-estradiol plays a key role in cerebrovascular
protection in women during their pre-menopausal life and
loss of circulating estrogen at reproductive senescence
increases both the incidence and severity of cerebrovascular
diseases. Therefore, OC and nicotine induced severe post-
ischemic damage might be a consequence of lack of estro-
gen signaling in the brain. In the present review we highlight
possible mechanisms by which OC and nicotine inhibits
estrogen signaling that could be responsible for severe is-
chemic damage in females.

Keywords Hippocampus . Estrogen receptors . Synaptic
plasticity . Mitochondria . Complex IV

Introduction

Oral contraceptives (OC) are the leading method of contra-
ception in United States [1]. An estimated 11.6 million
American women use OC and one fourth of OC users also
smoke cigarettes [2]. This population is continuously in-
creasing and smoking-related mortality accounts for an av-
erage loss of 14 years of a woman’s life [2–4]. Importantly,
OC and smoking-derived nicotine (N) are known to syner-
gistically increase the risk and severity of cerebral ischemia
in women. Cerebrovascular disease is one of the leading
causes of death in women in the United States [5]. However,
how nicotine dependence in combination with OC increases
the incidence and severity of cerebrovascular disease in
women is not clearly understood.

Women are naturally protected from cerebrovascular dis-
eases during pre-menopausal life and endogenous estrogen
plays a key role in cerebrovascular protection [6–10]. The
loss of circulating estrogen at reproductive senescence/me-
nopause increases both the incidence and severity of cere-
brovascular diseases [6, 11]. Apart from this natural loss of
circulating estrogens at menopause, cigarette smoking-
derived nicotine reduces the levels of endogenous estrogen
and induces early onset of menopause in women of repro-
ductive age [12–14]. In laboratory studies on female rats, we
confirmed the previously mentioned epidemiological find-
ings that chronic nicotine exposure reduced circulating 17β-
estradiol (E2) levels; furthermore, we found that chronic
nicotine exposure makes female rats more susceptible to
ischemic brain damage [15, 16]. Our study also demonstrat-
ed that the severity of ischemic brain damage is far greater in
female rats simultaneously exposed to OC and nicotine
(OC+N) than to nicotine alone (Fig. 1) [15–17]. In this study
we simulated smoking behavior-induced nicotine levels in
the human body by implanting an osmotic pump containing
nicotine into female rats for 16 days. Habitual smokers
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regulate their smoking behavior to sustain a certain level of
nicotine in their blood and the paradigm of continuous
nicotine delivery with an osmotic pump mimicked this
aspect [18]. In our study, we also confirmed nicotine release
by measuring cotinine—a nicotine metabolite. Furthermore,
we mimicked the use of OC in females by administering OC
orally to the rat. Combination OC therapy (OC containing two
hormones; e.g., estrogen and progestin) is the leading method
of contraception in the United States [1]. Therefore, we used a
combination OC pill containing 0.3 mg Norgestrel and
0.03 mg ethinyl estradiol, to investigate the effect of OC on
the brain. The rats exposed to either nicotine alone or in
combination with oral contraceptives were given an ischemic
episode using a model of global cerebral ischemia, which
results in a lack of blood flow in the forebrain similar to that
occurring after cardiac arrest. Cardiac arrest is one of the
conditions for which smoking-derived nicotine is a risk factor.
Cardiac arrest-induced global cerebral ischemia causes selec-
tive neuronal death in the hippocampal CA1 region of the
brain and remains the target of the current review [19].

Smoking-derived nicotine has a number of well-known
adverse systemic effects resulting in the increased risk of
cerebrovascular diseases in both sexes. Apart from these
systemic harmful effects, chronic nicotine exposure directly

hinders E2-mediated intracellular signaling in hippocampal
slice cultures (generated from female rat pups) which are
devoid of blood flow [16]. At the cellular level, E2 is known
to protect neurons through genomic mechanisms. Estradiol
is a lipophilic molecule and diffuses through the neuronal
plasma membrane, where it binds with its receptor in cyto-
sol and subsequently translocates to the nucleus where it
regulates the transcription of genes [20]. Estrogen receptors
are of two types: ligand-activated estrogen receptor-alpha
(ER-α) and beta (ER-β). Both these receptors play a role in
estrogen-mediated post-ischemic neuronal survival although
the mechanisms of neuroprotection governed by these
receptors might be different. A recent review also suggested
that estrogen receptor-dependent mechanisms of neuropro-
tection could vary depending on the experimental injury
model used, the level of estrogen administrated and the
mode of administration of the steroid (see review [21]).
Studies from various laboratories including ours suggested
that estrogen activates rapid intracellular nongenomic path-
ways that indirectly affect genomic activity via other tran-
scription regulators such as cyclic-AMP response element
binding protein (CREB) [22–24]. Other studies show that
E2-mediated activation of its extranuclear receptors rapidly
phosphorylates neuronal extracellular signaling-related ki-
nase (ERK) and the phosphotidylinositol-3-kinase (PI3 K)-
Akt pathway [25–28]. Estradiol-mediated ERK activation is
known to phosphorylate/regulate numerous downstream tar-
gets which include transcription factors. It has been demon-
strated that the activated ERK plays dual role in cerebral
ischemia [29, 30]. Therefore, it is crucial to understand in
which subcellular compartment ERK is activated following
E2 stimulation. On the other hand, differences in neuro-
protective mechanisms might be dependent on the sub-
cellular location of estrogen receptor activation. It is now
known that these receptors are located in the nucleus, plas-
ma membrane, and mitochondria [31–35]. Our recent stud-
ies demonstrated that the synergistic negative effects of OC
and nicotine reduced protein levels of membrane-bound and
mitochondrial ER-β (Fig. 2) [15–17, 36]. Therefore, ER-β
signaling at these two locations will be discussed in subse-
quent sections in order to delineate deleterious effects of OC
and nicotine on the female brain.

The Membrane-Bound ER-β Signaling in the Brain:
a Target of OC and Nicotine

The membrane-bound estrogen receptors exist within cav-
eolar rafts tethered to the inner face of the plasma mem-
brane. In the caveolar rafts, estrogen receptors are bound to
the specific membrane proteins such as caveolin-1/2/3, iso-
forms of G-protein (i.e., Gsα and Gqα) and L-type calcium
channels [37, 38]. The caveolae are signaling regulators that
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Fig. 1 Effect of nicotine alone or in combination with oral contraceptives
on post-ischemic hippocampal neuronal survival in female rats. The
graph shows number of normal neurons in the CA1 region of hippocam-
pus. Data expressed as a percentage of sham (100 % normal neurons) in
rat hippocampus 7 days after induction of cerebral ischemia. In this study
we simulated nicotine dependence in rat by implanting an osmotic mini-
pump, which produced a dose of 4.5 mg/kg/day. To mimic the OC
(0.3 mg Norgestrel and 0.03 mg ethinyl estradiol) regimen in women,
rats were given OC by oral gavage. The dose was prepared to mimic a
woman’s OC daily dose based on 1,800 cal/day. Taking into account that
rats need an average of approximately 32 cal/100 g of BW per day; a
typical 290±20 gm rat requires 96 cal/day. The rats were given OC
treatment for three consecutive days and placebo on the fourth day based
on the 4-day estrous cycle of rat, and to resemble OC administration in
women. On the 16th day, after completion of approximately four estrous
cycles, the rats in the OC/placebo groups were exposed to cerebral
ischemia. Modified from Raval et al. [16]
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serve to orchestrate the interaction of receptors and signal-
ing molecules, modulating trans-membrane signaling in a
rapid and specific manner. A necessary step in estrogen
receptors localization to caveolae is palmitoylation of the
receptor [34, 38, 39].

Palmitoylation is a post-translational modification that
regulates membrane–protein interactions [40–43]. Protein
S-palmitoylation refers to the addition of palmitate (16-
carbon fatty acid) to a cysteine residue [40–42]. The unique
reversibility of protein palmitoylation allows proteins to
shuttle between intracellular membrane compartments. Var-
ious physiological stimuli regulate this palmitate cycling
and contribute to cellular homeostasis [42]. Recently, pal-
mitoyl acyl transferases have been identified as enzymes
responsible for protein palmitoylation [40]. It has been
demonstrated that the palmitoylation of human estrogen
receptor at cysteine 447 is essential for receptor interaction
with caveolin-1 and its subsequent localization to the plas-
ma membrane [33]. Mutation of cysteine 447 to an alanine
has been found to result in loss of membrane estrogen
receptors in Chinese hamster ovarian cells [34, 44]. In
addition, the physical interaction between estrogen receptors
and caveolin-1 is abolished, and membrane estrogen effects
are eliminated [34, 44]. This suggests that palmitoylation is
a crucial modification for membrane translocation of estro-
gen receptor(s) and disturbances in the processes of palmi-
toylation reflect on estrogen signaling. In an unpublished
study, we observed that chronic nicotine impairs the process

of palmitoylation of ER-β in an in vitro model of hippo-
campal slice cultures. This result indicates possible trans-
portation defects which are reflected in low levels of
membrane bound ER-β after nicotine in the hippocampus
of female rats [16]. We observed significant lower levels of
membrane-bound ER-β protein in OC and nicotine group as
compared to the nicotine-alone group. This finding sug-
gested that the combination of OC+N aggravates nicotine
toxicity in the hippocampus [16].

As mentioned at the beginning of this section, the
membrane-bound ER-β are located within caveolae. In hip-
pocampal neurons estrogen receptors co-localized with
metabotropic glutamate receptors (mGluR) in the caveolae
and the cross-talk between estrogen receptors and mGluR
confers estrogen-mediated phosphorylation of CREB (see
review [37]). The phosphorylated CREB is key for post-
ischemic neuronal survival and pCREB plays a major role in
both short-term and long-term synaptic plasticity in hippo-
campus and other brain structures [45]. It has been shown
that loss of synaptic function leads to neuronal cell death in
the hippocampus after cerebral ischemia [46]. Therefore,
defects of ER-β CREB signaling after OC and nicotine
might hinder hippocampal synaptic plasticity which could
be a contributing factor for severe post-ischemic injury in
OC and nicotine-exposed female rats.

Estrogen receptor-beta is predominantly expressed in the
hippocampus and synaptic ER-β is suggested to be a more
responsive target to E2. Loss of synaptic function leads to
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Fig. 2 Effect of nicotine alone or in combination with oral contra-
ceptives on ER-β protein levels in sub-cellular fractions of hippocam-
pus. Top representative immunoblots showing the protein levels of ER-
β in the membrane, mitochondrial, and nuclear fractions for the hip-
pocampus different experimental conditions viz. saline (S), nicotine
(N), oral contraceptives (OC), and oral contraceptives in combination

with nicotine (OC+N). Beta-actin (cytoskeletal), Tim 23 (mitochondri-
al marker), and lamin (nuclear marker) were used as loading controls.
Bottom graphs present densitometric analysis of scanned Western blots.
Note the OC and nicotine exposure decreased the protein levels of
membrane-bound and mitochondrial ER-β protein in hippocampus of
female rats. Figure modified from Raval et al. [11, 36]
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neuronal cell death in the hippocampus after cerebral ische-
mia. Our previous study demonstrated that hippocampal
slices harvested 24 h after global cerebral ischemia
exhibited no long-term potentiation (LTP; a cellular corre-
late of learning and memory) response, even when no his-
topathological abnormalities were observed, suggesting that
synaptic dysfunction precedes neuronal cell death in the
hippocampus after global cerebral ischemia [46]. In female
mice, activation of ER-β potentiates LTP in CA1 neurons
and improves hippocampus-dependent cognition [47]. Fur-
thermore, the use of selective ER-β agonists increases the
levels of key synaptic proteins such as the post-synaptic
density, synaptophysin and the AMPA-receptor (α-amino-
3-hydroxyl-5-methyl-4-isoxazole-propionate) in the hippo-
campus of mice [47]. These changes in synaptic proteins
mediated by ER-β activation are related to morphological
changes such as increased dendritic branching and increased
density of mushroom-type spines in hippocampal neurons
[47]. Overall, these studies showed that ER-β is a key
mediator of hippocampus-dependent synaptic functions.

We found a reduction of short-term synaptic plasticity at
the Schaffer Collateral-CA1 synapse of rats chronically ex-
posed to nicotine indicated by the impairment of paired pulse
facilitation and post-tetanic potentiation (Fig. 3) [48]. In con-
trast to our results demonstrating that nicotine attenuated
short-term plasticity, prior studies demonstrated enhancement
of LTP following nicotine application. However, those studies
mainly investigated acute effects of nicotine on LTP or were
conducted on male experimental animals [49, 50]. Biological
responses to nicotine are gender-specific [51]. Therefore, dis-
crepancies observed between our results and prior literature
might be due to differences in the duration of nicotine expo-
sure or sex. Furthermore, our results that chronic nicotine

exposure reduced membrane-bound ER-β protein and im-
paired short-term plasticity, suggest a possible role of ER-β
in mediating short-term plasticity.

Membrane-bound estrogen receptors are also implicated
in mediating estrogen’s effects on hippocampus-dependent
enhancement of cognitive performance [52, 53]. The
membrane-mediated effect of estrogen is evident from a study
using an E2:bovine serum albumin (BSA) conjugate [54]. The
BSA-conjugated E2 fails to penetrate cell membranes and
could not induce activation of an E2-response [54, 55]. Appli-
cation of BSA-conjugated E2 to the hippocampus produced
behavioral performance-enhancing effects as that of free E2,
suggesting that BSA-conjugated E2 mediates effects of estro-
gen via membrane-bound estrogen receptors in the hippocam-
pus [52, 54]. Additionally, studies have demonstrated a key
role for ER-β in hippocampus-dependent memory and cogni-
tion [56]. ER-β knockout mice treated with estradiol show
impairments in acquisition of a spatial reference memory,
implicating a role for ER-β in hippocampus-dependent cog-
nition [57]. However, the preceding two studies did not iden-
tify the sub-cellular location of ER-β that is responsible for
mediating its effects on cognition. Taken together, the above
literature and our findings that a combination of OC and
nicotine reduces ER-β-mediated pCREB signaling in hippo-
campus, suggest that OC and nicotine may have deleterious
effects on cognition. However, the clinical significance of this
effect will require further investigation. Additionally, it will be
essential to investigate the extent to which the effect of nico-
tine and OC on synaptic plasticity and cognition persists after
cessation of nicotine alone or nicotine plus OC. This investi-
gation could guide future translational research addressing
women smokers trying to give up smoking. The investigation
of this nature could explain why women addicted to nicotine
might respond differently to hormone replacement therapy
(HRT). Further knowledge regarding how nicotine interacts
with female endocrinology is essential for understanding the
effects of nicotine addiction on HRT and for understanding
why the Women’s Estrogen for Stroke Trial and the Women’s
Health Initiative failed to show any benefit of HRT [58–62].

Synergistic Inhibitory Effect of Oral Contraceptives Plus
Nicotine Inhibits ER-β-Regulated Mitochondrial
Functions

Mitochondrial estrogen receptors play a direct role in
estrogen-mediated regulation of mitochondrial respiratory
function [63–65]. The mitochondrial respiratory chain con-
verts substrates generated from glycolysis, Krebs cycle, and
β-oxidation into energy in the form of ATP, a process known
as oxidative phosphorylation (OXPHOS) [66–68]. The
OXPHOS system is composed of five multi-enzyme com-
plexes (complexes I through V) and two electron carriers, a
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Fig. 3 Nicotine attenuates short-term synaptic plasticity in female rats.
Relative slope of paired-pulse stimulation given at intervals of 20, 80,
160, 320, and 480 ms recordings from saline and nicotine exposed rat
hippocampal slices are presented. The results showed significant de-
pression at 40 ms (p=0.01), and 80 ms (p=0.05) of paired-pulse
stimulations in nicotine-exposed rats as compared to the saline group.
Modified from Raval et al. [48]
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quinone (coenzyme Q) and a small heme containing protein
(cytochrome c) that are located in the inner mitochondrial
membrane. These respiratory complexes are formed by sub-
units encoded by both the mitochondrial and the nuclear
genome with the exception of complex II which is entirely
encoded by nuclear DNA. In this energy-generating pathway,
the reducing equivalents NADH and FADH2 formed during
the TCA cycle and β-oxidation enter into the electron trans-
port chain (complexes I through IVof the OXPHOS system) at
the level of complex I (NADH:ubiquinone oxidoreductase) or
at the level of complex II (succinate dehydrogenase),
respectively. Electrons are subsequently transferred to
the non-protein electron carrier coenzyme Q and then
to complex III (ubiquinol:cytochrome c oxidoreductase
or bc1 complex). The second electron carrier, cytochrome c,
acts as a bridge for the transfer of electrons between
complexes III and IV (cytochrome c oxidase). Once the
electrons have reached complex IV they are transferred
to molecular oxygen to form water [66]. During the
transfer of electrons through the electron transport chain
(ETC, complexes I–IV), protons are translocated simul-
taneously from the matrix to the mitochondrial intermembrane
space by complexes I, III, and IV. This proton translo-
cation creates an electrochemical gradient that is utilized
by complex V (ATPase synthase) to generate ATP with
the concomitant translocation of protons back into the
matrix.

Complex IV enzyme activity is significantly increased
upon ER-β agonist treatment in isolated mitochondria
whereas ER-α agonist treatment failed to do so [36]. This
study once more confirmed the presence of ER-β in mito-
chondria that was demonstrated by other labs earlier and
identified that ER-β regulates the complex IV function [32,
36]. The mammalian complex IV is a 200-kDa complex
composed of 13 different subunits, three (COX1, COX2,
and COX3 subunits) of which form the catalytic core and
are encoded by mitochondrial DNA (mtDNA), whereas the
rest of the subunits are encoded by the nuclear genome
(COX4, COX5a, COX5b, COX6a, COX6b, COX6c,
COX7a, COX7b, COX7c, and COX8 subunits; Fig. 4)
[66, 69].

Mitochondrial DNA (mtDNA) is an intronless circular
double-stranded DNA containing 37 genes. Thirteen out of
37 mitochondrial genes are encoded for proteins that serve
in the electron transport system, with the remainder encod-
ing for tRNA and rRNA required for expression. MtDNA
transcription is initiated at two promoters (PL and PH)
located in the D-loop regulatory region through the binding
of mitochondrial RNA (mtRNA) polymerase and the mito-
chondrial transcription factors Tfam (mtDNA maintenance
factor; mtTFA) and TFB (mitochondrial transcription factors
B2, TFB1M and TFB2M) making polycistronic transcripts
that are processed later [70, 71]. The processing of these

polycistronic transcription units remains to be fully charac-
terized [73].

Estrogen receptors bind to the estrogen responsive element
(ERE) located in the D-loop of the mtDNA, suggesting that
estrogen receptors are involved in modulation of mitochon-
drial gene expression [74, 75]. However, the exact mecha-
nisms of regulation of mtDNA transcription induced by this
hormone remain obscure. One of the reasons is that if mito-
chondrial transcription is regulated by estrogen binding to the
D-loop in the mtDNA, one would expect that all genes
encoded in the mtDNA would be equally increased upon
estrogen binding but that does not seem to be the case. Only
certain transcripts have been reported to increase in expression
upon estrogen exposure. For example, estrogen increased and
estrogen receptor antagonists (ICI 182,780) decreased mRNA
levels of the cytochrome c oxidase subunits 1 and 2 in a
human breast epithelial cell line [76]. In HepG2 estrogen
increased the levels of cytochrome c oxidase subunit 3,
ATP6 (subunit of Complex V) and ND1 (subunit of complex
I) mRNAs [77]. Another study on ovariectomized female rats
demonstrated that estrogen replacement significantly in-
creased cytochrome c oxidase subunit 3 mRNA levels in the
hippocampus [65]. Importantly, cytochrome c oxidase subu-
nits 1, 2, and 3 are mtDNA-encoded genes and the preceding
two studies confirmed a role of the estrogen receptor in
expression of mtDNA-encoded subunits of the cytochrome c
oxidase gene.

The question that remains to be investigated is whether
the increase in specific mitochondrial transcripts upon es-
trogen stimulation is related to a subsequent processing of the
polycistronic translational unit and the stability of the different
mRNAs, or if other mechanisms yet to be analyzed are in-
volved. Interestingly, there are partial estrogen responsive
element sequences that might account for the differential
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transcription of mitochondrial genes. These ERE sequences
are distributed in different genes on the murine mtDNA: D-
loop, tRNA-leu, 12S rRNA, and cytochrome oxidase subunits
1 and 3. Likewise, partial ERE in humans has been described
in the 12S and 18S rRNAs, tRNA-leu, and D-loop [78].

Additional studies demonstrated that mitochondrial
pCREB promotes the expression of mitochondrial genes
[79–82]. ER-β regulates estrogen-mediated phosphorylation
of CREB and silencing ER-β reduced mitochondrial pCREB
following ethinyl estradiol (estrogenic component of OC)
treatment in hippocampus [36]. Furthermore, silencing of
ER-β lowered protein levels of mitochondria-encoded com-
plex IV subunits 1, 2, and 3 (Cox 1, 2, and 3), indicating the
role of ER-β in pCREB-mediated OXPHOS protein expres-
sion [36]. Importantly, owing to the dual genomic origin of
complex IV subunits, the assembly process of this complex is
very complicated and highly regulated [69]. To assemble
complex IV, subunits translated from both genomes must
come together in a coordinated and regulated manner [66].
Defects in complex IV subunits assembly and/or stability
cause mitochondrial dysfunction [68, 83–85]. Mitochondrial
dysfunction remains a central cause of ischemic neuronal
death [86–88]. The previously observed defects in mitochon-
drial complex IV subunits protein and function after OC plus
nicotine could aggravate mitochondrial dysfunction after
brain ischemia, possibly explaining the exacerbation of post-
ischemic damage after use of OC plus nicotine [16]. Figure 5
depicts the putative mechanism of OC plus nicotine induced
action on mitochondrial functions and neuronal survival. Mi-
tochondrial functional abnormalities observed after OC plus
nicotine were not observed in the nicotine alone group, sug-
gesting that these harmful effects of OC plus nicotinemight be
due to a unique synergy of nicotine with OC. However, this
may be a timing or dosage issue, meaning that longer or higher
nicotine exposure could produce similar effects; therefore,
future studies are needed to dissect the effects of time and
dosage of nicotine exposure in female rats.

The mechanisms of cell death after brain ischemia are
complex. Generation of reactive oxygen species and release
of cytochrome c, and their consequent effects on mitochon-
drial dysfunction, are considered key factors for the induction
of cerebral ischemic injury. Previous studies from our labora-
tory demonstrated that the post-ischemic release of cyto-
chrome c into the cytosol during early reperfusion activates
the caspase cascade, which in turn activates protein kinase C
isozyme delta (δPKC) by proteolysis [89]. Activation of
δPKC in turns mediates ischemic injury by putatively acting
on caspase 3 and causing secondary mitochondrial dysfunc-
tion [89]. The binding of activated δPKC to mitochondria
inhibits anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein ac-
tivation. The Bcl-2 stabilizes the mitochondrial membrane
potential and prevents the release of mitochondrial cyto-
chrome c, thus blocking activation of the caspase cascade

and the onset of cell death [90, 91]. Estrogen’s putative effects
mediating neuroprotection include attenuation of post-
ischemic caspase-3-activation [92] and cytochrome c release
from the mitochondria [93] in the hippocampus and is corre-
lated with neuroprotection [94]. Estradiol has been shown to
increase transcription of pro-survival bcl-2 in vivo after ische-
mic stroke [95]. Based on this literature, the loss of anti-
apoptotic signaling might be another factor responsible for
the observed post-ischemic hippocampal injury after nicotine
and OC treatment; however, this aspect needs further
investigation.

Cerebral Vasculature Estrogen Receptors: a Possible
Candidate Responsible for Harmful Effects of OC
and Nicotine on Female Brain

The cerebral vasculature is specialized to preserve brain
function, maintaining cerebral blood flow constant
(autoregulation) during systemic pressure changes, protect-
ing the brain against the influx of toxic agents through the
blood–brain barrier, and transporting required materials and
metabolites across [96]. Estrogen regulates cerebral blood
flow through multiple mechanisms such as (1) increase in
endothelium-dependent nitric oxide (NO) production (2),
decrease in vascular tone (3), and suppression of thrombosis
and inflammation disruptive to the regulation of cerebrovas-
cular function [96–101].

The ability of estrogen to enhance NO production by
endothelial NO synthase (eNOS) is the most extensively
studied effect of ovarian hormones on the cerebrovasculature
[96]. Stirone et al. noted that in vivo estrogen treatment
resulted in a 100 % increase in eNOS mRNA copy number
and increased eNOS protein levels by 47 % in the cerebral
blood vessels of mice [102]. The eNOS gene expression is
regulated by estrogen receptors [103]. Cerebral vessels ex-
press estrogen receptors (ER-α and -β) in both the smooth
muscle and endothelial cell layers of cerebral blood vessels
[97]. Isolated cerebral vessels express more eNOS protein
after in vitro incubation with physiological concentrations of
17β-estradiol; and this effect is blocked by the estrogen re-
ceptor antagonist (ICI 182,780) [104]. Estrogen receptor-α
protein expression is upregulated in cerebral blood vessel
endothelial cells after estrogen treatment to ovariectomized
mice [102]. Estrogen-mediated vascular protection after ische-
mia is achieved via ER-α, which increased vascular expres-
sion of angiopoietin-1 and stimulated angiogenesis in the
brain [105, 106].

Cerebrovascular dysfunction and pathology include endo-
thelial dysfunction, thrombosis, inflammation, and atheroscle-
rosis which contribute to the pathogenesis of stroke and brain
ischemia. Newer-generation OC formulations in use to-date
persistently increase the risk of thrombus formation; however,
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the mechanism is not understood [107]. The formation of a
clot requires interaction of the blood with a biochemical or
mechanical lesion in the vascular wall. Platelets in the blood
produce thrombin and play a critical role in thrombus forma-
tion. Platelets express estrogen receptors [108, 109]. ER-β is
found in membrane and cytosolic fractions of platelets [110].
Knockout of ER-β resulted in increased expression of P-
selectin in platelets causing their activation. The decline or
deprivation of ovarian hormones is associated with decreased
ER-β expression and increased platelet activation/adhesion
[111]. Estrogen treatment of ovariectomized pigs decreased
platelet aggregation and secretion compared with untreated
ovariectomized pigs [112]. Decline in ovarian hormones is
also associated with increased expression of adhesion mole-
cules, phosphatidylserine, and CD40, which allow the platelet
to interact with leukocytes and endothelial cells of the vascular
wall. This is implicated in the progression of arterial disease
[113–117]. Risk for arterial diseases is compounded by other
clinical risk factors such as nicotine addiction.

Given the presence of estrogen receptors in cerebral arter-
ies, information about the role of estrogen receptors in the
cerebral vasculature after nicotine addiction in women is
limited and needs to be investigated [96, 118]. Additionally,
it is well known that the chronic nicotine usage increases
thrombus formation and alters cerebrovascular endothelial cell
function [119–127]. It is important to emphasize the fact that
nicotine and OC are independent risk factors for endothelial
dysfunction and thrombus formation; however, the synergistic
deleterious effect of nicotine and OC on endothelial and
platelet function in women is not known. Furthermore, how
long the risk of thrombus formation persists after cessation of
smoking in OC users requires investigation. Exploring the
possible impact of chronic nicotine exposure alone or in

combination with OC on vascular or endothelial estrogen
receptors might help understand the underlying mechanism
causing increased severity of cerebrovascular diseases in
women smokers using OC.

Conclusion

Despite global warnings and awareness of the detrimental
effects of smoking on health, smoking-derived nicotine addic-
tion makes it more difficult for women smokers to relinquish
the habit than for men smokers [128, 129]. The rise in the
number of women smokers continues to be a major public
health concern in the United States. The United States is
currently dealing with veterans of the Iraq and Afghanistan
wars and women constitute a growing segment of the military
veteran population and women veterans of the Iraq and
Afghanistan wars are smoking at alarming rates. Smoking-
derived nicotine in female rats renders them more susceptible
to ischemic brain damage, a consequence that could occur
from brain injury in combat. Smoking is the one preventable
risk factor, and relinquishing this habit could reduce the risk
for cerebrovascular diseases. In recent years, women smokers
trying to give up smoking have switched to the new electronic
nicotine delivery systems (e-Cigarettes) that deliver dosages
of nicotine that mimics mild, moderate, and heavy smoking-
derived nicotine. The e-Cigarettes are marketed as a “healthy
tool for smoking cessation” and advertised with an aim to
attract women. Although the e-Cigarettes are devoid of other
compounds in cigarettes, their safety is questionable and the
Food and Drug Administration (FDA) warns the public
about the potential negative effects of nicotine on
health. The effects of nicotine are more harmful for
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Fig. 5 Putative mechanism of
action of nicotine and oral
contraceptives on hippocampus
of female. This figure depicts
the main theme of this review
that oral contraceptives along
with nicotine induces ER-β loss
from hippocampus and
subsequently alters intracellular
estrogen signaling, synaptic,
and mitochondrial functions
which could be responsible for
severe ischemic injury in
female rats
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women who use OC and studies are needed to (1)
indentify specific effects on nicotine vs. nicotine in
combination with OC on the female brain and (2) define
for how long harmful effects of nicotine alone or in
combination with OC on female brain persist after re-
spective withdrawals. Currently multimillion national
“smoke cessation” programs (e.g., Tobacco-free Florida,
smokefree.gov) are creating a numerically important
subset of the women who are “oral contraceptive users
and ex-smokers”. The studies directed to better under-
stand the consequences of nicotine withdrawal specific
to OC-exposed women could guide future translational
research.
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